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1. Introduction

The analysis of gauge symmetries in theories defined on usual commutative space is quite

familiar, either in the Lagrangian or Hamiltonian formalisms. In the later formalism,

for instance, there is a definite method [1 – 3] of obtaining the gauge generator, based on

Dirac’s [4] conjecture that it has to be a linear combination of the first class constraints.

Poisson bracketing the generator with the variables then yields their specific gauge trans-

formations.

In this paper we provide a systematic Hamiltonian analysis of gauge symmetries in

noncommutative theories; i.e. theories defined on a noncommutative space where the usual

pointwise multiplication is replaced by the star multiplication. Our motivation stems from

recent analysis [5 – 10] which show that, in extending gauge symmetries from the usual

(commutative) to the noncommutative realm, one is faced with a choice. Either gauge

transformations are deformed in such a way that the usual coproduct (Leibniz) rule is

preserved or the standard commutative space gauge transformations are retained at the

expense of twisting the normal coproduct rule. While the former is referred as star deformed

gauge symmetry, the latter is called twisted gauge symmetry. These notions have also

been considered in the context of gravity [9]. Because of this ambiguity it is clear that

extending the concepts of gauge generators and transformations from the commutative to

the noncommutative realm is quite nontrivial.

In this paper we analyse both types of gauge symmetry in the Hamiltonian formula-

tion, complementing the Lagrangian approach done by us [10]. As a specific model, the

noncommutative Yang Mills action coupled to fermionic matter has been taken. The first

class constraints of the theory are identified. The gauge generator is constructed by taking

an appropriate combination of these constraints. Poisson bracketing the generator with

the gauge or matter variables leads to the star deformed gauge transformations. Subse-

quently by providing a “twist” to the Poisson brackets, the twisted gauge transformations
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are obtained. This twist is dictated by a novel interpretation of the twisted coproduct of

gauge transformations. We find that the twisted coproduct is the normal coproduct with

the stipulation that the gauge parameter is pushed outside the star operation at the end

of all computations.

The paper is organized as follows. In section 2 we discuss a general formulation to

obtain the gauge generator and the gauge transformations in a noncommutative space

framework. Section 3 is dedicated for the analysis of star deformed gauge transformation.

In section 4 we concentrate on the twisted gauge transformations. The issues related to

the twisted coproduct rule is discussed in detail in this section. Finally section 5 is for

conclusions.

2. General formulation

The gauge symmetry of a system can be analysed either by the Lagrangian approach [11]

where the starting point is the gauge identity of that system expressed in terms of the Euler

derivatives or by the Hamiltonian approach, based on Dirac’s conjecture that the generators

of the gauge transformation are given by a linear combination of the first class constraints.

Here we concentrate on the second approach for obtaining the gauge transformations of

the fields on a noncommutative space.

Let us first briefly mention the formulation for a general field theoretical model defined

on a noncommutative space. The results are basically appropriate star deformation of the

commutative space results. The star product is defined as usual,

(f ∗ g)(x) = exp

(

i

2
θµν∂x

µ∂y
ν

)

f(x)g(y)|x=y (2.1)

where θµν is a constant two index antisymmetric object. We consider a system with a

canonical Hamiltonian Hc and a set of first class constraints Φa ≈ 01 which satisfy the

involutive algebra

{Hc,Φa(x)} =

∫

dy V b
a (x, y) ∗ Φb(y), (2.2)

{Φa(x),Φb(y)} =

∫

dz Cc
ab(x, y, z) ∗ Φc(z) (2.3)

where V and C are structure functions which, in general, depend on the field variables.

The constraints coming directly from the definition of canonical momentum are named

primary constraints and that obtained from their time consistency (the Poisson brackets

between the Hamiltonian and the constraints should be weakly zero) are called secondary

constraints.

For such a system the total Hamiltonian is given by the sum of the canonical Hamil-

tonian and a linear combination of the primary first class constraints.

HT = Hc +

∫

dx va1(x) ∗ Φa1
(x) (2.4)

1The weak equality in Φa ≈ 0 implies that all Poisson brackets involving Φa have to be calculated

first and then only the constraints can be imposed. In contrast, a strong equality A = 0 implies that A

(obviously) has vanishing Poisson bracket with all the phase space variables.
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Here va1 are Lagrange multipliers. The equations of motion in the Hamiltonian formulation

are now given by

q̇i(x) = {qi(x),HT } = {qi(x),Hc} +

∫

dy va1(y) ∗ {qi(x),Φa1
(y)} (2.5)

with the constraint equation

Φa1
≈ 0. (2.6)

The generator of the system, according to Dirac’s algorithm is a linear combination of all

the first class constraints,

G =

∫

dx εa(x) ∗ Φa(x). (2.7)

The point to emphasise is that all components of the gauge parameters εa are not inde-

pendent. The number of independent ε′s is given by the number of independent primary

first class constraints (labeled by ‘a1’). To find the conditions among these parameters, we

review the method used earlier by one of us [12] which is an adaptation of the commutative

space approach discussed in [1 – 3].

An infinitesimal gauge transformation of a variable is given by the Poisson bracket,

defined below, between the variable F and the gauge generator G,

δF (x) =

∫

dy εa(y) ∗ {F (x),Φa(y)}. (2.8)

The point is that in demonstrating the invariance of the action under some variation or

in the derivation of the Euler-Lagrange equation of motion from the action principle, one

requires the commutativity of that (δ) variation with the time differentiation. In the

Hamiltonian framework also we impose that requirement,

δ
d

dt
qi =

d

dt
δqi (2.9)

where the time differentiation is defined in (2.5) and the δq variation in (2.8). From these

equations we obtain

δq̇i(x) =

∫

dz εa(z) ∗ {{qi(x),Hc},Φa(z)} +
∫ ∫

dy dz εb(z) ∗ va1(y) ∗ {{qi(x),Φa1
(y)},Φb(z)} +

∫

dy δva1(y) ∗ {qi(x),Φa1
(y)}. (2.10)

Similarly we can write

d

dt
δqi(x) =

∫

dy εa(y) ∗ {{qi(x),Φa(y)},Hc}

+

∫

dy dz εa(y) ∗ va1(z) ∗ {{qi(x),Φa(y)},Φa1
(z)}

+

∫

dy
dεa

dt
(y) ∗ {qi(x),Φa(y)}. (2.11)
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Equating (2.10) and (2.11) and using the Jacobi identity we get
∫

dz εa(z) ∗ {{Hc,Φa(z)}, qi} +

∫

dy dz εa(z) ∗ va1(y) ∗ {{Φa1
(y),Φa(z)}, qi}

−

∫

dy δva1(y){qi,Φa1
(y)} +

∫

dy
dεa(y)

dt
∗ {qi,Φa(y)} = 0. (2.12)

Using the algebra (2.2) and (2.3), the above equation reduces to,

∫

dz (

[

dεb(z)

dt
−

∫

dy εa(z) ∗ [V b
a (z, y) +

∫

du va1(u) ∗ Cb
a1a(u, z, y)]

]

∗
∂Φb(y)

∂pi
− δva1(z) ∗

∂Φa1
(z)

∂pi
) = 0.

Since the constraints are taken to be irreducible (i.e. independent) we get the following

conditions, from the secondary and primary sectors, respectively,

dεb2(x)

dt
=

∫

dy εa(y) ∗ V b2
a (y, x) +

∫

dy dz εa(y) ∗ va1(z) ∗ Cb2
a1a(z, y, x) (2.13)

δvb1(x) =
dεb1(x)

dt
−

∫

dy εa(y) ∗ V b1
a (y, x) −

∫

dy dz εa(y) ∗ va1(z) ∗ Cb1
a1a(z, y, x). (2.14)

The first relation expresses the fact that the gauge parameters εa are not all independent.

In fact we find that, as stated earlier, the number of independent parameters of a gauge

system is equal to the number of primary first class constraints. On the other hand, the

second equation gives the variation of the Lagrange multipliers.

We will now use these results to analyse both star deformed gauge symmetries as well

as twisted gauge symmetries.

3. Star deformed gauge symmetry

So far we were discussing a general formulation for any gauge theory on noncommutative

space. Now we concentrate on a particular model which describes a non-Abelian gauge

field in the presence of a matter (fermionic) sector,

S =

∫

dx [−
1

4
F a

µν(x) ∗ Fµνa(x) + ψ̄(x) ∗ (iγµDµ ∗ −m)ψ(x)] (3.1)

where

Dµ ∗ ψ(x) ≡ ∂µψ(x) + igAµ(x) ∗ ψ(x) (3.2)

Fµν(x) ≡ ∂µAν(x) − ∂νAµ(x) + ig[Aµ(x), Aν(x)]∗. (3.3)

The above action is invariant under the star deformed gauge transformations,

δ∗Aµ = Dµ ∗ η = ∂µη + ig(Aµ ∗ η − η ∗ Aµ), (3.4)

δ∗Fµν = ig[Fµν , η]∗ = ig(Fµν ∗ η − η ∗ Fµν) (3.5)

δ∗ψ = −igη ∗ ψ (3.6)

δ∗ψ̄ = igψ̄ ∗ η (3.7)
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with the usual Leibniz rule

δ∗(A ∗ B) = δ∗A ∗ B + A ∗ δ∗B. (3.8)

Varying the action (3.1) with respect to the gauge field leads to the field equation

∂µFµν + ig[Aµ, Fµν ]∗ + jν = 0 (3.9)

where jν is the fermionic current

jν = gψλ(γν)σλ ∗ ψ̄σ . (3.10)

Note the ordering in which fermionic fields appear which is not equal to −gψ̄σ(γν)σλ ∗ψλ.

This is due to the fact in calculating the variation of the term
∫

dx γµψ̄ ∗ Aµ ∗ ψ we have

used the cyclicity property of the star product,

∫

dx A ∗ B ∗ C =

∫

dx B ∗ C ∗ A =

∫

dx C ∗ A ∗ B (3.11)

to keep δ∗Aµ at an extreme end. We write the equation of motion (3.9) in the form

Dµ ∗ Fµν + jν = 0 (3.12)

where

Dµ ∗ ξ = ∂µξ + ig[Aµ, ξ]∗ (3.13)

which, in component notation, reads,

(Dµ ∗ ξ)a = ∂µξa −
g

2
fabc{Ab

µ, ξc}∗ + i
g

2
dabc[Ab

µ, ξc]∗ (3.14)

where the structure constants are defined by the symmetry matrices as,

[T a, T b] = ifabcT c (3.15)

{T a, T b} = dabcT c. (3.16)

The structure constants fabc and dabc can be made completely antisymmetric and com-

pletely symmetric as mentioned in [12, 13].

We now start a Hamiltonian description of this theory. Throughout the paper we

assume θ0i = 0 to avoid higher order time derivatives. Due to the presence of grassmanian

variables in our model (3.1), the Poisson brackets in the previous section should be replaced

by the graded brackets. The graded brackets between the fermionic variables are given by,

{ψα(x), ψ†
β(y)} = −iδαβδ(x − y). (3.17)

The canonical momentum of the Lagrangian (3.1) is given by,

πa
σ =

∂L

∂ ˙Aσa
= F a

σ0 (3.18)
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which leads to a primary constraint

Φa
1 = πa

0 ≈ 0. (3.19)

The canonical Hamiltonian of the system is given by,

H =

∫

dx [
1

2
πic ∗ πic +

1

4
F a

ij ∗ F ija − (Di ∗ πi)a ∗ Aa
0

−iψ̄ ∗ γi∂iψ + gψ̄ ∗ γµAµ ∗ ψ + mψ̄ ∗ ψ] (3.20)

where the operator D has already been defined in eq. (3.14). Now using the basic Poisson

bracket relation

{Aµ(x), πν(y)} = δµ
ν δ(x − y) (3.21)

the secondary constraints of the system are computed

Φa
2 = {H,Φa

1} = {H,πa
0} = (Di ∗ πi)

a − gψλ ∗ (T a)σλ(ψ†)σ ≈ 0 (3.22)

where we have used
∫

dy A(y) ∗ δ(x − y) =

∫

dy A(y)δ(x − y) = A(x). (3.23)

Note that this constraint is the zeroth component of the equation of motion (3.9) expressed

in phase space variables. The algebra of the Φ1 constraints is trivial,

{Φa
1(x),Φb

1(y)} = 0 (3.24)

{Φa
1(x),Φb

2(y)} = 0. (3.25)

The algebra of the constraint Φ2 with itself is also found to close, but in a nontrivial way.

Since this calculation involves some subtleties, few intermediate steps are presented here.

We write

Φa
2 = Xa + χa (3.26)

where

Xa = (Di ∗ πi)
a

= ∂iπ
a
i −

g

2
fabc{Ab

i , π
c
i }∗ + i

g

2
dabc[Ab

i , π
c
i ]∗ and

χa = −gψλ ∗ (T a)σλ(ψ†)σ . (3.27)

The graded brackets of the terms Xa and χa separately close among themselves. Let us

show it first for Xa [13]. Using the identity [12, 13]

A(x) ∗ δ(x − y) = δ(x − y) ∗ A(y) (3.28)

we obtain

{∂iπ
a
i (x),−

g

2
f bcd{Ac

j(y), πd
j (y)}∗} + {−

g

2
facd{Ac

i (x), πd
i (x)}∗, ∂jπ

b
j(y)}

=
g

2
fabc{δ(x − y), ∂iπ

c
i (x)}∗ (3.29)
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and

{∂iπ
a
i (x), i

g

2
dbcd[Ac

j(y), πd
j (y)]∗} + {i

g

2
dacd[Ac

i (x), πd
i (x)]∗, ∂jπ

b
j(y)}

= −i
g

2
dabc[δ(x − y), ∂iπ

c
i (x)]∗ (3.30)

Exploiting the Jacobi identity

[πi(x), [Ai(x), T bδ(x − y)]∗]∗ + [Ai(x), [T bδ(x − y), πi(x)]∗]∗

+[T bδ(x − y), [πi(x), Ai(x)]∗]∗ = 0 (3.31)

the remaining terms of {Xa(x),Xb(y)} are written as

i

2
g2fabc{δ(x − y), [Ai, πi]

c
∗}∗ +

1

2
g2dabc[δ(x − y), [Ai, πi]

c
∗]∗. (3.32)

Combining the expressions (3.29), (3.30) and (3.32), we get the closed algebra

{Xa(x),Xb(y)} =
g

2
fabc{δ(x − y),Xc(x)}∗ − i

g

2
dabc[δ(x − y),Xc(x)]∗ (3.33)

Now to show that the graded bracket {χa(x), χb(y)} really closes we use the product rule

{A,BC} = {A,B}C + (−1)ηAηB B{A,C}

{AB,C} = A{B,C} + (−1)ηBηC{A,C}B
(3.34)

where

η = 0 for bosonic variable and

η = 1 for fermionic variable

Eq. (3.34), together with the bracket (3.17) and the identity (3.28), yields,

{χa(x), χb(y)} =
g

2
fabc{δ(x − y), χc(x)}∗ − i

g

2
dabc[δ(x − y), χc(x)]∗. (3.35)

Thus eqs. (3.33) and (3.35) imply the closure of Φ2,

{Φa
2(x),Φb

2(y)} =
g

2
fabc{δ(x − y),Φc

2(x)}∗ − i
g

2
dabc[δ(x − y),Φc

2(x)]∗. (3.36)

Likewise the involutive algebra of the canonical Hamiltonian with the constraints is found

to be,

{Hc,Φ
a
1} = Φa

2 (3.37)

{Hc,Φ
a
2} = −

g

2
fabc{A0b,Φc

2}∗ + i
g

2
dabc[A0b,Φc

2]∗. (3.38)

Due to the algebra (3.24) and (3.25) the term Cb2
a1a in the r. h. s. of eq. (2.3) vanishes. So

we simplify eq. (2.13) as

dεb2(x)

dt
=

∫

dy εa(y) ∗ V b2
a (y, x). (3.39)
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The V function defined in eq. (2.2) can be found from the algebra (3.37) and (3.38) as

(V 2
1 )ab(x, y) = δabδ(x − y), (3.40)

(V 2
2 )ab(x, y) =

g

2
fabc{δ(x − y), A0c(y)}∗

+i
g

2
dabc[δ(x − y), A0c(y)]∗. (3.41)

Now we write eq. (3.39) in its expanded form as,

dε2a(x)

dt
=

∫

dy ε1b(y) ∗ (V 2
1 )ba(y, x) +

∫

dy ε2b(y) ∗ (V 2
2 )ba(y, x). (3.42)

Using (3.40) and (3.41) in the above eq. we get

ε̇2a = ε1a −
g

2
fabc{ε2b(x), A0c(x)}∗ + i

g

2
dabc[ε2b(x), A0c(x)]∗ (3.43)

so that

ε1a = (D0 ∗ ε2)a. (3.44)

Thus, using the above result, the generator given in (2.7) is written in terms of a single

parameter as,

G =

∫

dx (D0 ∗ ε2)a ∗ Φa
1 + ε2a ∗ Φa

2 (3.45)

where the constraints Φ1 and Φ2 are defined in (3.19) and (3.22). After obtaining the

complete form of the generator, we are now in a position to calculate the variation of the

different fields. The general formula to get this follows from (2.8),

δqα(x) =

∫

dy εb(y) ∗ {qα(x),Φb(y)}, b = 1, 2. (3.46)

=

∫

dy (D0 ∗ ε2)a(y) ∗ {qα(x),Φa
1(y)}

+

∫

dy ε2a(y) ∗ {qα(x),Φa
2(y)}. (3.47)

Let us first study the gauge transformation of the field Aµ. The variation of its time

component is

δ∗A
a
0(x) =

∫

dy (D0 ∗ ε2)b(y) ∗ {Aa
0(x), πb

0(y)}

=

∫

dy (D0 ∗ ε2)b(y)δab ∗ δ(x − y)

=

∫

dy (D0 ∗ ε2)a(y)δ(x − y)

= (D0 ∗ ε2)a (3.48)

– 8 –



J
H
E
P
0
2
(
2
0
0
7
)
0
4
6

where we have used the identity (3.23). The variation of the space component is likewise

given by,

δ∗A
a
i (x) =

∫

dy ε2b(y) ∗ {Aa
i (x),Dj ∗ πb

j(y)}

=

∫

dy ε2b(y) ∗ (−∂
y
i δ(x − y)δab +

g

2
f bca{Ac

i (y), δ(x − y)}∗

−i
g

2
dbca[Ac

i (y), δ(x − y)]∗).

Now dropping the boundary term and using the cyclicity property (3.11) we write the

above expression as

δ∗A
a
i (x) = ∂iε

2a −
g

2
fabc{Ab

i , ε
2c}∗ + i

g

2
dabc[Ab

i , ε
2c]∗

= (Di ∗ ε2)a(x). (3.49)

Combining eqs. (3.48) and (3.49) we obtain,

δ∗A
a
µ = (Dµ ∗ ε2)a (3.50)

thereby reproducing (3.4) with the identification ε2 → η. In a likewise manner the gauge

transformation of the matter fields is also obtained,

δ∗ψα(x) =

∫

dy ε2a(y) ∗ {ψα(x),Φ2a(y)}

=

∫

dy ε2a(y) ∗ {ψα(x),−gψλ(y) ∗ (T a)σλψ†
σ(y)

=

∫

dy ε2a(y) ∗ ψλ(y) ∗ (T a)σλ(−i)δασδ(x − y) (3.51)

where (3.17) has been used. Now using the property (3.23), the above equation is written

as

δ∗ψα(x) = −igε2a(x) ∗ (T a)αβ ψβ(x). (3.52)

In a similar way we get

δ∗ψ̄α(x) =

∫

dy ε2a(y) ∗ {ψ̄α(x),Φ2a(y)}

= ig (T a)βα ψ̄β(x) ∗ ε2a(x) (3.53)

which reproduces (3.6) and (3.7).

It is also possible to compute the gauge variations of star composites in the same way.

For example,

δ∗(ψα(x) ∗ ψβ(x)) =

∫

dy ε2a(y) ∗ {ψα(x) ∗ ψβ(x),Φ2a(y)}

= ig

∫

dy (T a)βλε2a(y) ∗ ψλ(y) ∗ ψα(x) ∗ δ(x − y)

−ig

∫

dy (T a)αλε2a(y) ∗ ψλ(y) ∗ δ(x − y) ∗ ψβ(x).
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Using the identity (3.28) the argument of ψα in the first integral and that of ψβ in the

second integral is shifted from x to y so that star product is defined only at the same point

(y). Finally, using (3.11) and (3.23), and keeping in mind the grassmanian nature of the

fermionic field we get

δ∗(ψα ∗ ψβ) = −ig
(

(T a)βλψα ∗ ε2a ∗ ψλ + (T a)αλε2a ∗ ψλ ∗ ψβ

)

. (3.54)

This is the result one also finds by using (3.52) and the standard coproduct rule,

δ∗(ψα ∗ ψβ) = (δ∗ψα) ∗ ψβ + ψα ∗ (δ∗ψβ) (3.55)

= −ig
(

ψα ∗ ε2a(T a)βλ ∗ ψλ + ε2a(T a)αλ ∗ ψλ ∗ ψβ

)

(3.56)

other star composites can be treated identically. This culminates our analysis of star

deformed gauge symmetry. Note that the standard coproduct rule (3.8) is necessary for

the invariance of the action as well as the consistency of the analysis.

4. Twisted gauge symmetry

So far we were discussing about the star deformed gauge transformation from a general

Hamiltonian formulation which obeys the normal coproduct rule (3.8). But as discussed

in [5, 6, 8] the action (3.1) is also invariant under the undeformed gauge transformations2

δηAµ = Dµη = ∂µη + ig(Aµη − ηAµ),

δηFµν = ig[Fµν , η] = ig(Fµνη − ηFµν)

δηψ = −igηψ

δηψ̄ = igψ̄η

(4.1)

with the twisted Leibniz rule [5, 6, 8],

δη(f ∗ g) =
∑

n

(
−i

2
)n

θµ1ν1 · · · θµnνn

n!

(δ∂µ1
···∂µnηf ∗ ∂ν1

· · · ∂νng + ∂µ1
· · · ∂µnf ∗ δ∂ν1

···∂νnηg). (4.2)

This rule is also essential to obtain δηFµν . Using (3.3) and,

δη(Aµ ∗ Aν) = ∂µηAν + Aµ∂νη − igηa ([T a, Aµ] ∗ Aν + Aµ ∗ [T a, Aν ])

= ∂µηAν + Aµ∂νη − ig[η, (Aµ ∗ Aν)] (4.3)

following from (4.2), immediately leads to the undeformed transformation (4.1) for δηFµν .

The gauge variation of the other star composites are similarly computed from (4.2),

δη(Aµ ∗ ψ) = (∂µη)ψ − igη(Aµ ∗ ψ) (4.4)

δη(φ ∗ ψ) = −igηa ((T aφ) ∗ ψ + φ ∗ (T aψ)) . (4.5)

2For an alternative view, see [7].
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In an analogous manner we can also obtain the gauge variation of a chain of fields, as for

example

δη(φ ∗ ψ ∗ χ) = −igηa((T aφ) ∗ ψ ∗ χ + φ ∗ (T aψ) ∗ χ

+φ ∗ ψ ∗ (T aχ)) (4.6)

δη(φ ∗ ψ ∗ Aµ) = −igηa ((T aφ) ∗ ψ ∗ Aµ + φ ∗ (T aψ) ∗ Aµ)

+igηaφ ∗ ψ ∗ [Aµ, T a] + (φ ∗ ψ)∂µη (4.7)

where φ and χ have similar transformation properties as ψ. We observe that the trans-

formation rules for the star products of variables is also identical to the corresponding

undeformed relations, as for example,

δη(AµAν) = ∂µηAν + Aµ∂νη − ig[η, (AµAν)] (4.8)

where Aµ is the commutative space gauge field with normal gauge transformation.

We now present an alternative interpretation of the twisted coproduct rule (4.2). The

results (4.3), (4.4), (4.5) and also (4.6), (4.7) are seen to follow by using the standard

coproduct rule (3.8) but pushing the gauge parameter η outside the star operation at the

end of the computations. Denoting this manipulation as,

δη(A ∗ B) ∼ (δηA) ∗ B + A ∗ (δηB) (4.9)

we find

δη(φ ∗ ψ) ∼ (δηφ) ∗ ψ + φ ∗ (δηψ) (4.10)

∼ −ig(ηφ) ∗ ψ − igφ ∗ (ηψ) (4.11)

= −igηa{(T aφ) ∗ ψ + φ ∗ (T aψ)} (4.12)

which reproduces (4.5). Likewise we see,

δη(Aµ ∗ ψ) ∼ (δηAµ) ∗ ψ + Aµ ∗ (δηψ)

∼ (∂µη − igηa[T a, Aµ]) ∗ ψ + Aµ ∗ (−igηaT aψ)

= ∂µηψ − igηa([T a, Aµ] ∗ ψ) − igηa(Aµ ∗ T aψ)

= ∂µηψ − igη(Aµ ∗ ψ) (4.13)

which reproduces (4.4). Similarly,

δη(φ ∗ ψ ∗ χ) ∼ (δηφ) ∗ ψ ∗ χ + φ ∗ (δηψ) ∗ χ + φ ∗ ψ ∗ (δηχ) (4.14)

∼ −ig(ηφ) ∗ ψ ∗ χ − igφ ∗ (ηψ) ∗ χ − igφ ∗ ψ ∗ (ηχ) (4.15)

= −igηa{(T aφ) ∗ ψ ∗ χ + φ ∗ (T aψ) ∗ χ

+φ ∗ ψ ∗ (T aχ)} (4.16)

thereby reproducing (4.6).
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We now suitably modify the Hamiltonian formulation of the previous section to

systematically obtain the undeformed gauge transformations (4.1) as well as the rela-

tions (4.3), (4.4), (4.5) manifesting the twisted Leibniz rule. As far as the gauge generator

is concerned the analysis is similar to the previous case and the same expression (3.45)

is obtained. This is not unexpected since the Gauss constraint defining the generator is

basically the time component of the field equations which are identical in both treatments.

The difference can come only through the computation of the relevant Poisson brackets

that lead to the gauge transformations. In our interpretation the twisted coproduct is

just the standard coproduct with the proviso that the gauge parameter is pushed outside

the star operation at the end of the computations. We adopt a similar prescription for

computing the modified Poisson brackets.

The gauge variation of the time component of Aµ field is found by suitably Poisson

bracketing with (3.45) (renaming ε2 as η),

δηA
a
0(x) =

∫

dy (D0 ∗ η)b(y) ∗ {Aa
0(x), πb

0(y)}

∼

∫

dy (D0 ∗ η)b(y)δab ∗ δ(x − y)

∼

∫

dy (∂0η
a −

g

2
fabc{Ab

0, η
c}∗ + i

g

2
dabc[Ab

0, η
c]∗)(y) ∗ δ(x − y)

= ∂0η
a − gfabcAb

0η
c

where in the last step we put η outside the star product following our prescription. This

is written in a compact notation as,

δηA
a
0 = (D0η)a. (4.17)

The variation of the space component is also calculated in a similar way

δηA
a
i (x) =

∫

dy ηb(y) ∗ {Aa
i (x),Dj ∗ πb

j(y)}

∼

∫

dy ηb(y) ∗ (−∂
y
i δ(x − y)δab +

g

2
f bca{Ac

i (y), δ(x − y)}∗

−i
g

2
dbca[Ac

i (y), δ(x − y)]∗)

∼

∫

dy ηa(y) ∗ (−∂
y
i δ(x − y)) +

g

2
f bca(ηb(y) ∗ Ac

i (y) ∗ δ(x − y) + ηb(y) ∗ δ(x − y) ∗ Ac
i (y))

−i
g

2
dbca(ηb(y) ∗ Ac

i (y) ∗ δ(x − y) − ηb(y) ∗ δ(x − y) ∗ Ac
i (y))

Now dropping the boundary term, using the cyclicity property (3.11) and the relation (3.23)

we write the above expression as

δηA
a
i (x) ∼ ∂iη

a(x) +
g

2
f bca(ηb(x) ∗ Ac

i (x) + Ac
i (x) ∗ ηb(x))

−i
g

2
dbca(ηb(x) ∗ Ac

i (x) − Ac
i (x) ∗ ηb(x))
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Finally, keeping the gauge parameter η outside the star product we obtain

δηA
a
i (x) = ∂iη

a − gfabcAb
iη

c

= (Diη)a(x). (4.18)

Combining eqs. (4.17) and (4.18) we write the gauge variation in a covariant notation

δηA
a
µ = (Dµη)a (4.19)

The gauge variation of the fermionic field can be obtained in a similar way

δηψα(x) = −igηa(x) (T a)αβ ψβ(x) (4.20)

δηψ̄α(x) = ig (T a)βα ψ̄β(x)ηa(x). (4.21)

The calculation of the gauge variation of composite fields needs some care. For example

we consider the variation δη(Aµ ∗ ψ),

δη(A0(x) ∗ ψ(x)) = T aδ(Aa
0(x) ∗ ψ(x))

∼ T a

∫

dy (D0 ∗ ηb)(y) ∗ {Aa
0(x) ∗ ψ(x), πb

0(y)} +

T b

∫

dy ηc(y) ∗ {Ab
0(x) ∗ ψ(x),−gψ(y) ∗ (T c)ψ†(y)}

∼ T a

∫

dy (D0 ∗ ηa)(y) ∗ δ(x − y) ∗ ψ(x)

−igT b

∫

dy ηc(y) ∗ T cψ(y) ∗ Ab
0(x) ∗ δ(x − y). (4.22)

As mentioned earlier, the star product is defined only at the same point of two functions.

So to evaluate the above integral we use the identity (3.28) to change the argument of ψ

and Ab
0 from x to y. Thus we obtain

δη(A0(x) ∗ ψ(x)) ∼ T a

∫

dy (D0 ∗ ηa)(y) ∗ ψ(y) ∗ δ(x − y)

−igT b

∫

dy ηc(y)T c ∗ ψ(y) ∗ δ(x − y) ∗ Ab
0(y). (4.23)

Using the properties (3.11), (3.23) and finally removing the gauge parameter η outside the

star product we obtain

δη(A0 ∗ ψ) = T a(∂0η
aψ − gfabcηc(Ab

0 ∗ ψ)) − igT bT cηc(Ab
0 ∗ ψ). (4.24)

Following the symmetry properties (3.15), (3.16) we write the above result as

δη(A0 ∗ ψ) = T a(∂0η
aψ − gfabcηc(Ab

0 ∗ ψ))

−igT aηc(Ab
0 ∗ ψ)(

1

2
dbca +

i

2
f bca) (4.25)

= T a(∂0η
aψ) + gT aηc(Ab

0 ∗ ψ)(−
i

2
dbca +

1

2
f bca). (4.26)
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The space part is also obtained in a similar way

δη(Ai ∗ ψ) = T a(∂iη
aψ) + gT aηc(Ab

i ∗ ψ)(−
i

2
dbca +

1

2
f bca). (4.27)

Expressions (4.26), (4.27) are basically the time and space component of the equation (4.4).

Finally, we calculate the gauge variation of a star product of three fields,

δη(ψα ∗ ψβ ∗ ψγ)(x) ∼

∫

dy η(y) ∗ {ψα(x) ∗ ψβ(x) ∗ ψγ(x),−gψλ(y) ∗ T a
σλψ†

σ}

∼ −ig

∫

dy η(y) ∗ T a
γλψλ(y) ∗ ψα(x) ∗ ψβ(x) ∗ δ(x − y)

+ig

∫

dy η(y) ∗ T a
βλψλ(y) ∗ ψα(x) ∗ δ(x − y) ∗ ψγ(x)

−ig

∫

dy η(y) ∗ T a
αλψλ(y) ∗ δ(x − y) ∗ ψβ(x) ∗ ψγ(x)

Now using the property (3.28) and its generalisation,

A(x) ∗ δ(x − y) ∗ B(x) = B(y) ∗ δ(x − y) ∗ A(y) (4.28)

all arguments of the above equation are shifted to y to yield,

δη(ψα ∗ ψβ ∗ ψγ)(x) ∼ −ig

∫

dy η(y) ∗ T a
γλψλ(y) ∗ δ(x − y) ∗ ψα(y) ∗ ψβ(y)

−ig

∫

dy η(y) ∗ T a
βλψλ(y) ∗ ψγ(y) ∗ δ(x − y) ∗ ψα(y)

−ig

∫

dy η(y) ∗ T a
αλψλ(y) ∗ ψβ(y) ∗ ψγ(y) ∗ δ(x − y)

where the extra negative sign in the second integral is due to the flip of two grassmanian

variables. Making use of the identities (3.11) and (3.23) we evaluate the above integral and

finally removing the gauge parameter η outside the star product we obtain

δη(ψα ∗ ψβ ∗ ψγ) = −igηa{(T aψ)α ∗ ψβ ∗ ψγ + ψα ∗ (T aψ)β ∗ ψγ

+ψα ∗ ψβ ∗ (T aψ)γ} (4.29)

which is just eq. (4.6) written in component form. The gauge variations of the other com-

posites are computed in the same way reproducing the results (4.3), (4.5), (4.7) obtained

by using the twisted coproduct rule.

This section is concluded by making a comparison with results obtained in [8] using

Hopf algebra techniques [14]. In this approach the gauge generator (in the Schroedinger

representation) is taken exactly as in the undeformed situation,

Gα =

∫

dz
(

∂µαl(z) + gαr(z)As
µ(z)f rsl

) δ

δAl
µ(z)

(4.30)

which is consistent with the algebra,

[Gα, Gβ ] = igG[α,β]. (4.31)
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The usual coproduct is then twisted by introducing the generator (4.30) and is shown to

be compatible with the general expression (4.2).

It should however be pointed out that the generator (4.30) only generates the un-

deformed gauge transformations. Star deformed gauge transformations are obviously not

generated by it.

In our unified approach the generator is given by (3.45). Depending on the interpre-

tation of computing the Poisson brackets of this generator with the field variables yields

either the star deformed gauge transformations or the undeformed gauge transformations

with the twisted coproduct. The generator (3.45) satisfies a star deformed version of (4.31)

[Gα, Gβ ] = gG[α,β]∗ . (4.32)

5. Conclusions

The conclusion of our work is that, as far as gauge symmetry is concerned, both star

deformed symmetry and twisted symmetry are on an equal footing. The gauge generator,

obtained in the Hamiltonian formalism, reproduced star deformed gauge transformations

with a normal coproduct as well as undeformed gauge transformations with a twisted

coproduct. This was based on an appropriate interpretation of computing the Poisson

brackets that led to the gauge transformations.

The present analysis revealed a new interpretation of the twisted coproduct. It was

found that the twisted coproduct was equivalent to the normal coproduct with the condition

that the gauge parameter had to be taken outside the star operation at the end of the

computations.

A point which has been stressed in the literature [8, 9] is that twisted symmetry is not a

physical symmetry in the usual sense and it is uncertain whether Noether charges and ward

identities can be obtained. This is because twisted invariance leads to transformations that

do not act only on the fields. Nevertheless we were successful in suitably defining gauge

generators and transformations. This was quite reassuring since for a genuine symmetry

(twisted or otherwise), a generator must be appropriately defined. We feel this to be an

important step in regarding a deformed gauge theory as a theory with properties similar

to what we desire for physics.
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